
Automated Verification of Timed Security Protocols
with Clock Drift

Li Li1, Jun Sun1, and Jin Song Dong2

1 Singapore University of Technology and Design
2 National University of Singapore

Abstract. Time is frequently used in security protocols to provide better secu-
rity. For instance, critical credentials often have limited lifetime which improves
the security against brute-force attacks. However, it is challenging to correctly
use time in protocol design, due to the existence of clock drift in practice. In
this work, we develop a systematic method to formally specify as well as au-
tomatically verify timed security protocols with clock drift. We first extend the
previously proposed timed applied π-calculus as a formal specification language
for timed protocols with clock drift. Then, we define its formal semantics based
on timed logic rules, which facilitates efficient verification against various secu-
rity properties. Clock drift is encoded as parameters in the rules. The verification
result shows the constraints associated with clock drift that are required for the se-
curity of the protocol, e.g., the maximum drift should be less than some constant.
We evaluate our method with multiple timed security protocols. We find a time-
related security threat in the TESLA protocol, a complex time-related broadcast
protocol for lossy channels, when the clocks used by different protocol partici-
pants do not share the same clock rate.

1 Introduction

Time is essential in cyber-security, e.g., message transmissions and user authentications
are often required to be finished in a timely manner. In order to check the relevant tim-
ing requirements, timestamps are constructed from clocks, sent through networks and
checked by participants in security protocols. For example, in order to deliver a mes-
sage m timely, the sender first attaches its current clock reading ts to m and sends them
in a secure way. Then, when the receiver obtains ts and m, it checks ts against its own
clock reading tr with tr − ts ≤ p to ensure that m is received within a certain timing
threshold p. In the above example, the untimed security (m is not tampered, replayed
nor disclosed) and the timed security (m is delivered in time) are equally important.
Given a timed protocol, existing literatures [12,16] focus on checking its security when
the clocks of different protocol participants are fully synchronized. However, in prac-
tice, timestamps are often generated and checked based on different local clocks with-
out perfect synchronization, which could compromise the security proved based on the
assumption of perfect clock synchronization. Hence, this work studies the security of
timed protocols with the present of the clock drift.

Clock drift commonly exists in practice. For instance, in sensor networks, cheap
sensors usually do not have enough resources to maintain accurate clock rate and pre-
cise clock reading. Hence, small clock drift should be expected and considered in their

applications. Even though the local clocks can be synchronized at runtime over the net-
work, various unavoidable factors, e.g., network delay, traffic congestion, can lead to
a certain level of inaccuracy. Furthermore, when attackers are present in the network,
they may attack the clock synchronization protocol [23]. In such a case, the local clocks
under the attack may have large clock drift. As a result, when the security depends on
the clock reading, the protocol should provide counter-measures for the clock drift.

Clock drift can cause insecurity of timed protocols because the protocol participants
rely on local clocks in practice, whereas the security protocol is designed based on the
global clock. For instance, in the above message transmission example, let t′s and t′r be
the readings of the global clock when ts and tr are read from the local clocks respec-
tively. The receiver deems the message as timely by checking tr − ts ≤ p. However,
the security property requires t′r − t′s ≤ p to ensure a timely message transmission. In
order to capture the inconsistency between local clocks and the (fictional) global clock,
we first extend timed applied π-calculus [16] to formally specify clock drift in protocol
models. Then, we define the semantics of the local clocks in Section 4, which captures
their relationship to the global clock. By using this semantics, we can answer the fol-
lowing two security questions. First, our work can check whether a protocol is secure
with the presence of clock drift. More importantly, our work can find out how much
clock drift can be tolerated in a timed security protocol. We extend SPA, a verification
tool we developed in [15,16], with the new calculus and semantics for clock drift. In this
work, we use a corrected version [12] of Wide Mouthed Frog [7] as a running example
to illustrate our specification and verification method. We apply our method to a num-
ber of timed security protocols and successfully find a security threat in TESLA [22,21]
in Section 5.2, a complex time-related broadcast protocol for lossy channels, when the
clocks used by different protocol participants do not share the same clock rate.

2 Specification

In this section, we first introduce CWMF [12], a corrected version of Wide Mouthed
Frog [7] protocol, as a running example. When the local clocks of the protocol par-
ticipants in CWMF are assumed to be perfectly synchronized, CWMF can be verified
as secure [12,14] The verification proves that a secret session key can be established
among its participants within a certain time. However, it is unclear whether clock drift,
which is unavoidable in practice, would compromise the security of CWMF. In the
following, we first present CWMF in details and then demonstrate how timed applied
π-calculus, extended with local clocks, can be used to model such protocols.

2.1 Corrected Wide Mouthed Frog

CWMF is designed to establish a timely fresh session key k from an initiator A to
a responder B through a server S. In CWMF, whenever a message is received, the
receiver checks the message freshness before accepting it. To be general, we use a
parameter pm to represent the maximum message lifetime. Additionally, we consider
the minimal network delay as a parameter pn. Since pn is a timing parameter related to

the network environment, it is not directly used in the protocol specification. Instead, it
is a compulsory delay that applies to all of the network transmissions.

CWMF is a key exchange protocol that involves three participants: an initiator A, a
responder B and a server S. By assumption, A and B have registered their secret long-
term keys at the server respectively. The registered key of a user u is written as key(u),
which is used to encrypt all network communications between the user and the server.
Whenever a message m is transmitted between a user u and the server S, the message
m is encrypted by the symmetric encryption function encs written as encs(m, key(u)).
CWMF then can be described as the following three steps.

(1) A generates a random session key k at its local time ta
A→ S : 〈A, encs(〈ta, B, k, tag1〉, key(A))〉

(2) S receives the request from A at its local time ts
S checks : ts − ta ≤ pm
S → B : encs(〈ts, A, k, tag2〉, key(B))

(3) B receives the message from S at its local time tb
B checks : tb − ts ≤ pm
B accepts the session key k

First, A generates a fresh key k at its local time ta and initiates the CWMF protocol
with B by sending its name A and the request 〈ta, B, k, tag1〉 encrypted by key(A) to
S. Second, after receiving the request from A at S’s local time ts, S ensures the mes-
sage freshness by checking ts − ta ≤ pm. Then, S accepts A’s request by forwarding
the request 〈ts, A, k, tag2〉 encrypted by key(B) toB. It informsB that S receives a re-
quest from A at its local time ts to communicate with B using the key k. tag1 and tag2
are two constants that are used to distinguish these two messages. CWMF uses them to
prevent the reflection attack [18] in the original Wide Mouthed Frog protocol [7]. Third,
B checks the message freshness again and accepts the request from A if the message
is received in a timely fashion. All of the transmitted messages are encrypted under the
users’ long-term keys that are pre-registered at S.

2.2 Timed Applied π-calculus

Timed applied π-calculus works as a specification language for timed protocols. It is
essentially the calculus proposed in [16,2] with the extensions of local clocks and clock
drift. Table 1 presents its syntax with the extensions highlighted in the bold font.

In timed applied π-calculus, we compose messages using functions, names, nonces,
variables and timestamps. Functions are generally defined as f(m1,m2, . . . ,mn) ⇒
m @ D, where f is the function name, m1,m2, . . . ,mn are the input messages, m
is the output message and D is the consumed timing range. When m is exactly the
same as f(m1,m2, . . . ,mn), we call the function a constructor; otherwise, it is a de-
structor. For simplicity, we add some syntactic sugar as follows: (1) when D = [0,∞)
which is the largest timing range of functions, we omit ‘@ D’ in the function defini-
tion; (2) for constructors, we omit ‘⇒ m’ in the definition. For instance, the symmetric
encryption function is defined as encs(m, k), and its decryption function is defined as
decs(encs(m, k), k) ⇒ m. Some frequently used functions are defined in Appendix

Type Expression
Message(m) f(m1,m2, ...,mn) (function)

A,B,C (name)
n, k (nonce)
t, t1, ti, tn (timestamp)
x, y, z (variable)

Parameter(p) p, p1, pj , pm (parameter)
Clock(c) c, c1, ck, cs (clock)
Constraint(B) CS(t1, t2, . . . , tn, p1, p2, . . . , pm) (timing constraint)
Configuration(L) CS(p1, p2, . . . , pm) (parameter relation)
Process(P,Q) 0 (null process)

P |Q (parallel)
!P (replication)
νn.P (nonce generation)
µt.P (global clock reading)
µt : c.P (local clock reading)
if m1 = m2 then P [else Q]a (untimed condition)
if B then P [else Q] (timed condition)
wait µt until B then P (global timing delay)
wait µt : c until B then P (local timing delay)
let x = f(m1, . . .) then P (function application)
in(x).P (channel input)
out(m).P (channel output)
check m in db as unique then P (replay checking)
init(m)@t.P (initialization claim)
join(m)@t.P (participation claim)
accept(m)@t.P (acceptance claim)

a The expression with the brackets ‘[E]’ means that E can be omitted.

Table 1. Syntax of Timed Applied π-Calculus

C. Names are globally shared strings. Nonces are freshly generated random numbers.
Variables are memory locations for holding messages. Timestamps are clock readings.
Additionally, parameters are configurable constants (e.g., the maximum message life-
time pm) and persistent settings (e.g., the minimal network latency pn) in the protocol.

In this work, we extend [16] with local clocks. That is, timestamps can be read from
these local clocks rather than the shared global clock. For instance, in CWMF, the local
clocks of A, S and B can be declared as ca, cs and cb respectively.

The constraint set B = CS(t1, . . . , tn, p1, . . . , pm) represents a set of linear con-
straints over timestamps and parameters, which can acts as protocol checking conditions
and environment assumptions in the protocol. For instance, given the minimal network
latency pn, when a message sent at t is received at t′, we have t′− t ≥ pn. Additionally,
the configuration L = CS(p1, . . . , pm) is a set of linear constraints over parameters that

should be satisfied globally. For example, the configuration pn > 0 should be satisfied
because the message transmission delay should always be positive.

As shown in Table 1, processes are defined as follows. ‘0’ is a null process that does
nothing. ‘P |Q’ is a parallel composition of processes P and Q. The replication ‘!P ’
stands for an infinite parallel composition of process P , which captures an unbounded
number of protocol sessions running in parallel. The nonce generation process ‘νn.P ’
represents that a fresh nonce n is generated and bound to process P . The global clock
reading process ‘µt.P ’ means that a timestamp t is read from the global clock and
bound to process P . The local clock reading process ‘µt : c.P ’ similarly means that a
timestamp t is read from a local clock c and bound to process P . The checking condition
cond in the ‘if cond then P else Q’ process has two forms: 1) the untimed condition
m1 = m2 is a symbolic equivalence checking between two messages; 2) the timed
condition CS(t1, t2, . . . , tn, p1, p2, . . . , pm) is a constraint over timestamps and param-
eters. When cond evaluates to true, process P is executed; otherwise, Q is executed.
The global timing delay process ‘wait µt untilB then P ’ means that P is executed until
the reading t from the global clock satisfies the timing condition B. Similarly, the local
timing delay process ‘wait µt : c until B then P ’ means that P is executed until the
reading t from a local clock c satisfies the timing condition B. The function application
‘let x = f(m1, . . . ,mn) then P ’ means if the function f is applicable to a sequence of
messages m1, . . . ,mn, its result is bound to the variable x in process P . The channel
input ‘in(x).P ’ means that a message, bound to the variable x, should be received be-
fore executing P . The channel output ‘out(m).P ’ describes that the messagem shall be
sent out before executing process P . The uniqueness checking expression ‘check m in
db as unique then P ’ ensures that (1) the value of m does not exist in a database db be-
fore this expression, and (2) m is inserted into db after this expression. The uniqueness
checking is particularly useful for preventing replay attacks in practice.

Additionally, the init, join and accept events are introduced to specify the security
properties. They represent the initialization, participation and acceptance of the protocol
participants respectively according to their roles, which are elaborated in Section 3.

Notations and Definitions. For simplicity, tuplen(m1,m2, . . . ,mn) is simply written
as 〈m1,m2, . . . ,mn〉. A variable x is bound to a process P when x is constructed by
the function application process ‘let x = f(m1, . . .) then P else Q’ or the channel
input process ‘c(x).P ’ as shown in Table 1. When a variable x appears in a process
P while it is not bound to P , it is a free variable in P . A process is closed when it
does not have any free variable. Notice that all of the processes considered in this work
are closed. When x is a tuple in the function application process or the channel input
process above, we simply write x as 〈x1, x2, . . . , xn〉. When we only want to check that
a variable xi equals to a constant C, we can replace ‘xi’ with ‘=C’ in the above tuple.

Remarks. We do not need special syntax to specify private channels in timed applied
π-calculus. Private channels can be constructed with public channels and unbreakable
encryptions. For instance, in order to model a message m transmitted in a private
channel, we first introduce a secret key ks. Then, we can model a private channel as
out(encs(m, ks)).P |in(x).let m′ = decs(x, ks) then Q.

2.3 CWMF Model

In order to verify CWMF in a hostile environment, we make the following assumptions.
(1) The adversary can ask any protocol participant to join the protocol, including A, S
and B. (2) The adversary controls the protocol participation time, e.g., the initialization
time of A in CWMF. (3) S provides its session key exchange service to all of its regis-
tered users. (4) The adversary can register as any user at the server, except for A and B.
The precise attacker model employed in our work is discussed in Section 3. In CWMF,
because we are interested in the protocol acceptance between legitimate users, we as-
sume that B only accepts requests from A. Additionally, a public channel controlled by
the adversary is used in CWMF for network communication.

Before the protocol starts, all of its participants need to register a secret long-term
key at the server. We assume that A and B have already registered at the server us-
ing their names. Hence, the server can generate new keys for any other user (possibly
personated by the adversary), which can be modeled as the process Pr below.

Pr , in(u).if u 6= A ∧ u 6= B then out(key(u)).0

In CWMF, A takes a role of the initiator as specified by Pa below. It first starts the
protocol by receiving a responder’s name r from c, assuming that r is specified by the
adversary. Then, A generates a session key k and reads ta from its local clock ca. Then,
A emits an init event to indicate the protocol initialization with the arguments A, r, k
at ta. Finally, the message 〈A, encs(〈ta, r, k, tag1〉, key(A))〉 is sent from A to S.

Pa , in(r).νk.µta : ca.init(A, r, k)@ta.out(〈A, encs(〈ta, r, k, tag1〉, key(A))〉).0

As specified by the process Ps, after S receives a user’s request as a tuple 〈i, x〉,
it records its local time from cs as ts and decrypts x using key(i). If the decryption is
successful, it obtains the initialization time ti, the responder’s name r and the session
key k. When the freshness checking ts − ti ≤ pm is passed, S then believes that it
is participating in a protocol run at time ts and engages the join event. Later, a new
message encrypted by the responder’s key, written as encs(〈ts, i, k, tag2 〉, key(r)), is
sent to the responder over the public channel.

Ps , in(〈i, x〉).µts : cs.let 〈ti, r, k,=tag1〉 = decs(x , key(i)) then

if ts − ti ≤ pm then join(i, r, k)@ts.out(encs(〈ts, i, k, tag2 〉, key(r))).0

Additionally, as shown in the process Pb, when B receives the message from S,
B records its local time as tb and tries to decrypt request as a tuple of the server’s
processing time ts, the initiator’s id i and the session key k. If i = A and the freshness
checking tb− ts ≤ pm is passed, B then believes that the request is sent from A within
2 ∗ pm and engages the accept event at time tb.

Pb , c(x).µtb : cb.let 〈ts,=A, k,=tag2〉 = decs(x , key(B)) then

if tb − ts ≤ pm then check k in db as unique then accept(A,B, k)@tb.0

Finally, we have a process Pp , c(A).c(B).0 that broadcasts the names A and B.
The overall process P , (!Pr)|(!Pa)|(!Ps)|(!Pb)|(!Pp) is a parallel composition of the
infinite replications of the five processes described above.

3 Timed Security Properties

In this section, we define the timed security properties. Notice that the properties are
defined based on the global clocks, whereas the participants in the protocols rely on
local clocks in practice. In this work, we focus on the authentication properties, as they
can be largely affected by clock drift. We first introduce the adversary model as follows.

Adversary Model. We assume that an active attacker exists in the network, whose ca-
pabilities are extended from the Dolev-Yao model [13]. The attacker can intercept all
communications, compute new messages, generate new nonces and send the messages
he obtained. Additionally, he can use all the publicly available functions, e.g., encryp-
tion, decryption, concatenation. He can also ask the genuine protocol participants to
take part in the protocol at any time. Comparing our attack model with the Dolev-Yao
model, reading timestamps from various clocks, attacking weak cryptographic func-
tions and compromising legitimate protocol participants are allowed additionally. A
formal definition of the adversary model is defined as follows.

Definition 1. Adversary Process. The adversary is defined as an arbitrary closed timed
applied π-calculus process K which does not emit the init, join and accept events.

Timed Authentication. In a protocol, we often have an initiator who starts the protocol
and a responder who accepts the protocol. For instance, in CWMF,A is the initiator and
B is the responder. Additionally, other entities called partners, e.g., S in CWMF, can
be involved during the protocol execution. In general, the protocol authentication aims
at establishing common knowledge among the protocol participants when the protocol
successfully ends. Specifically, for timed protocols, the common knowledge contains
the information on the participants’ time.

Since different participants take different roles in the protocol, we introduce the
init, accept and join events for the initiator, the responder and the partners respectively.
Whenever a protocol participant believes that it is participating in a protocol as a certain
role, it engages the corresponding event with the protocol parameters and the correct
time. For instance, in CWMF, A engages init(A, r, k)@ta; S engages join(i, r, k)@ts;
and B engages accept(i, B, k)@tb. We remark that ta, ts and tb in above events should
be the correct readings from the global clock, which could be different from the values
used for constructing messages in the protocol.

Based on the init, join and accept events, the protocol authentication properties then
can be formally specified as event correspondences. The timed non-injective authenti-
cation is satisfied if and only if for every acceptance of the protocol responder, the
protocol initiator indeed initiates the protocol and the protocol partners indeed join in
the protocol, agreeing on the protocol arguments and timing requirements. We formally
define the non-injective timed authentication as follows.

Definition 2. Non-injective Timed Authentication. The non-injective timed authenti-
cation, denoted as Qn = accept ←[B]− init , join1 , . . . , joinn , is satisfied by a
closed process P , if and only if, given the adversary process K, for every occurrence
of an accept event in P |K, the corresponding init event and join events in Qn have
occurred before in P |K, agreeing on the arguments and the timing constraints B.

In CWMF, the non-injective timed authentication can be written as

Qn = accept(i, r, k)@tr

←[ts−ti ≤ §pm ∧ tr − ts ≤ §pm]−
init(i, r, k)@ti, join(i, r, k)@ts.

The injective timed authentication additionally requires an injective correspondence
between the protocol initialization and acceptance comparing with the non-injective
timed authentication. Hence, the injective timed authentication, which ensures the in-
feasibility of replay attack, is strictly stronger than the non-injective one.

Definition 3. Injective Timed Authentication. The injective timed authentication, de-
noted as Qi = accept ←[B]→ init , join1 , . . . , joinn , is satisfied by a closed process
P , if and only if, (1) the non-injective timed authentication Qn = accept ←[B]−
init , join1 , . . . , joinn , is satisfied by P ; (2) given the adversary process K, for every
init event ofQi occurred in P |K, at most one accept event can occur in P |K, agreeing
on the arguments in the events and the constraints B in global time.

For simplicity, given a non-injective authentication property Qn = accept ←[B]−
H and its injective version Qi = accept ←[B]→ H , we define two functions such
that inj (Qn) = Qi and non inj (Qi) = Qn. Hence, we can write injective timed
authentication of CWMF as Qi = inj (Qn).

4 Semantics of Clock Drift

In this section, we first briefly introduce the timed logic rules [16] which are used to
capture the semantics of the timed applied π-calculus. We use CWMF to demonstrate
how timed logic rules can be used to capture the semantics of timed applied π-calculus.
Particularly, we capture the semantics of reading timestamps from local clocks based
on two different ways of modeling clock drift. We use these two different semantics to
show that our method can be adopted to handle different scenarios in practice. We have
implemented these two different clock drift semantics in SPA [16].

4.1 Timed Logic Rules

In [16], we proposed the timed logic rules to define the semantics of the timed applied
π-calculus in terms of the adversary capabilities, so timed security protocols can be
verified efficiently. In this work, we show how to use them to capture clock drift. When
the semantics of calculus processes are represented by logic rules, we need additional
notations to differentiate the data types of names, nonces, timestamps, variables and pa-
rameters as shown in Table 2. (1) The syntax of variables and functions are unchanged.
(2) Names are appended with a pair of square brackets from A to A[]. (3) Nonces are
put inside of a pair of square brackets from n to [n]. (4) Timestamps are written with a
blackboard bold font from t to t. (5) Parameters are prefixed from p to §p.

Generally, each timed logic rule specifies a capability of the adversary in the form
of [G] e1, e2, . . . , en −[B]→ e. G is a set of untimed guards, {e1, e2, . . . , en} is a

Type Expression
Message(m) f(m1,m2, ...,mn) (function)

a[], b[], c[], A[], B[], C[] (name)
[n], [k], [N], [K] (nonce)
t, t1, ti, tn (timestamp)
x, y, z,X, Y, Z (variable)

Parameter(p) §p (parameter)
Constraint(B) C(t1, t2, . . . , tn (timing relation)

, §p1, §p2, . . . , §pm)
Configuration(L) C(§p1, §p2, . . . , §pm) (parameter config)
Event (e) init(?[d],m, t) (initialization)

join(?[d],m, t) (participation)
accept(?[d],m, t) (acceptance)
know(?m, t) (knowledge)
new(?[n], l []) (generation)
unique(?u, ?l [],m) (uniqueness)

Rule(R) [G] e1, . . . , en −[B]→ e (rule)

Table 2. Syntax of Timed Logic Rules

set of premise events, B is a set of timing constraints and e is a conclusion event. It
means that if the untimed guard condition G, the premise events {e1, e2, . . . , en} and
the timing constraints B are satisfied, the conclusion event e is ready to occur. When G
is empty, we simply omit ‘[G]’ in the rule.

The events represent the things that can occur in the protocol. In this work, six
types of events are essential to the timed protocols with clock drift. Similar to the timed
applied π-calculus, we have event init , join and accept that signal the authentication
claims made by the legitimate protocol participants. In particular, the init , join events
appear in the premise part whereas the accept events appear in the conclusion part.
We amend the events from init(m)@t, join(m)@t and accept(m)@t to init([d],m, t),
join([d],m, t) and accept([d],m, t) respectively. The additional nonce [d] represents
the session id, which is specifically introduced to check the authentication properties.

Additionally, know(m, t) means that the adversary obtains message m at time t.
Because the adversary intercepts all communications over the public channel, for every
network input in(x) at time t, we add know(x, t′) satisfying t′ ≤ t to the rule premises,
meaning that the adversary need to know x before time t so as to send it at t; for every
network output out(m) at time t, we construct a rule that concludes know(m, t′) and
satisfies t′ − t ≥ §pn, representing m can be intercepted by the adversary after the net-
work delay §pn. Furthermore, given a nonce generated in νn.P , we add new([n], l []) to
the rule premises, denoting the generation of nonce [n] at the process location l [] (we use
unique labels to represent different locations in the process). Lastly, unique(u, db[],m)
means that the message u should have a unique value in a database db[] (any constant
can be a database name). Given the above unique event constructed in a process, m
is an ordered tuple of messages that can be identified by 〈u, db[]〉, consisting of the

network inputs, generated nonces and read timestamps in the chronological order un-
til the process ends or its sub-process is an infinite replication process. Unique events
and new events are constructed in the following two cases: (1) when ‘check u in db as
unique then P ’ is present in the process, unique(u, db[],m) is added; (2) given ‘νn.P ’
in the process at the location l , new(n, l []) and unique(n, l[],m) are added. The lo-
cation names are generated by a special function loc(), which returns a unique name
to represent the current process location. The semantics of timed applied π-calculus is
presented in Appendix A.

Since we assume that different nonces must have different values, every rule can
have at most one new event for every single nonce. When two new events have the same
nonce in a rule, we merge them into a single event. Similarly, we need to merge other
events in the following scenarios: know events of the same message; unique events
with the same unique value and database; init , join or accept events with the same
session id. In general, each event is associated with a signature and premise events with
the same signatures in a rule should be merged. As shown in Table 2, event signature can
be constructed by concatenating its event name with a sequence of messages prefixed by
‘?’. For instance, in the event unique(?u, ?l[],m), the unique value u and the location l[]
is prefixed by ?, so its signature is ‘unique.u.l []’, where ‘.’ concatenates and separates
the strings.

To provide a better understanding of the timed logic rules, we show three examples
where clock drift does not exist in the following. Later, we compare them with those
rules with clock drift.

Example 1. Given that the symmetric encryption function encs is public, the adversary
can use it to encrypt messages. In order to use this function, the adversary first needs
to know a message m and a key k. Then, the encryption function returns the encrypted
message encs(m, k). Hence, the encryption can be represented as the following rule.

know(m, t1), know(k, t2) −[t1 ≤ t ∧ t2 ≤ t]→ know(encs(m, k), t) (1)

Notice that the timing constraints means that encs(m, k) can only be known to the
adversary after m and k are known, following the chronological order. �

Example 2. In CWMF, the server provides its key registration service to the public as
Ps. This service can be captured as follows.

[u 6= A[] ∧ u 6= B[]] know(u, t1) −[t− t1 ≥ §pn]→ know(key(u), t)

It means that anyone can register at the server using any name except A and B. �

Example 3. In this example, we demonstrate the timed logic rule for Pb in CWMF,
when B reads the timestamps from the global clock rather than its local clock. B re-
ceives a message encs(〈ts, A, k, tag2〉, key(B)) from S, records its current time as tb
and claims acceptance if tb−ts ≤ pm. Since the adversary can start the protocol at any-
time, we assume that tb is specified by the adversary. Then, the timed logic rule of Pb

is written as the following rule, where mb = 〈encs(〈ts, A[], k, tag2[]〉, key(B[])), tb〉.

unique(k, db[],mb),new([nb], lb[]), unique([nb], lb[],mb)

, know(tb, tb), know(encs(〈ts, A[], k, tag2[]〉, key(B[])), t1)

−[t1 ≤ tb ∧ tb − ts ≤ §pm]→ accept([nb], 〈A[], B[], k〉, tb) (2)

In Section 4.2, we will compare it with the rules explicitly modeling the clock drift. �

4.2 Semantics of Local Clocks

In this work, we additionally introduce the operation µt : c that reads a timestamp t
from a local clock c. This operation is applicable to the local clock reading process and
the local timing delay process shown in Table 1. In order to capture the semantics of
timestamps constructed with µt : c in the calculus, we need to record two timestamps
t and tg from the local clock c and the global clock respectively. The semantics of
regular operations in protocol execution, e.g., message constructions and guard condi-
tions, is defined based on the local time t because they use the real values read from
local clocks. However, the semantics of the security claims, i.e., init , join and accept
events, should be defined based on the global time tg to indicate the correct timing of
event engagement. In this way, we can correctly specify and distinguish two different
types of timestamps that are (1) used in the protocol execution and (2) captured by the
security properties. Hence, the remaining task is to establish the relation between t and
tg based on the assumptions of the clock drift. In the following, we show two different
ways of modeling clock drift. Notice that, when all of the timestamps are read from
the global clock, the timed logic rules remain the same as those in [16]. For instance,
the timed logic rules in Example 1 and Example 2 remain the same, while the timed
logic rule in Example 3 shall be updated to take clock drift into account. In this work,
we consider two different scenarios of clock drift: (VR) different clocks have different
clock rates but concern their maximum drift bounds; (SR) different clocks share the
same clock rate but have different readings. The differences between VR and SR in the
following time logic rules are highlighted in the red font.

Variable Clock Rate (VR). In VR, we assume that the local clock rate can vary during
the protocol execution. That is, local clocks can run faster or slower than the global
clock from time to time. Additionally, we assume that their maximum clock drift are
bounded, resulting in the following two properties. First, the timestamps read from the
same local clock should always be monotonic. For example, given a process µt1 :
c.µt2 : c.0, we have t1 ≤ t2. However, if t1 and t2 are read from two different local
clocks, e.g., µt1 : c1.µt2 : c2.0, t2 could be smaller than t1. Second, the differences
between a local clock and the global clock are always bounded by a maximum drift
parameter associated with that local clock. For instance, given a timestamp t read from
c at global time t′, we have |t− t′| ≤ pc, where pc is the maximum drift of c, satisfying
pc > 0. If VR is assumed, the timed logic rule of Pb can be written as the following
rule, where m′b = 〈encs(〈ts, A[], k, tag2[]〉, key(B[])), 〈tb, t′b〉〉.

unique(k, db[],m′b),new([nb], lb[]), unique([nb], lb[],m
′
b)

, know(tb, t
′
b), know(encs(〈ts, A[], k, tag2[]〉, key(B[])), t1)

−[t1 ≤ t′b ∧ tb − ts ≤ §pm ∧ |t′b − tb| ≤ §pb]→ accept([nb], 〈A[], B[], k〉, t′b)

Shared Clock Rate (SR). When the local clocks share the same clock rate of the (cor-
rect) global clock, the differences of the readings from different clocks are always the
same. In this case, we introduce a clock drift parameter dc for each clock c. Whenever a

timestamp t is read from c at the global time t′, we have t = t′+dc. Hence, in this case,
given the two timestamps extracted from the same local clock, their difference reflects
the exact duration of that time period. For instance, the timed logic rule of Pb can be
written the following rule, where db is the clock drift of cb and m′b is the same as above.

unique(k, db[],m′b),new([nb], lb[]), unique([nb], lb[],m
′
b)

, know(tb, t
′
b), know(encs(〈ts, A[], k, tag2[]〉, key(B[])), t1)

−[t1 ≤ t′b ∧ tb − ts ≤ §pm ∧ tb − t′b = §db]→ accept([nb], 〈A[], B[], k〉, t′b)

Comparing VR and SR. The difference between VR and SR can be illustrated with the
calculation of the round-trip delay (RTD) in the Network Time Protocol (NTP). NTP is
designed to synchronize the clocks between a client A and a server B. In NTP, A first
reads its clock ca as ta and then sends an authenticated signal to B. Once B receives
the signal, it reads its clock cb as tb. After B verifies the signal successfully, B reads
its clock cb as t′b and replies another authenticated signal back to A. Once A receives
the reply signal, it reads its clock ca as t′a. If the reply signal is correctly verified, A
calculates the RTD as δ = (t′a− ta)− (t′b− tb). When SR is assumed, the calculation of
δ is accurate even if clock drift exists. However, when VR is assumed, δ is not accurate
because the distance of clock drift can vary during the protocol execution.

4.3 Verification Overview

After obtaining the initial timed logic rules from the timed applied π-calculus as shown
above, the security properties then can be verified using the method proposed in [16].
We briefly introduce the method in the following and refer the readers to [16] for details.

In general, the verification method works by composing all of the existing timed
logic rules into new rules, by unifying the conclusion of one rule with the premises of
other rules. For instance, we can compose Rule (1) to Rule (2) as the following rule.

unique(k, db[],m′b),new([nb], lb[]), unique([nb], lb[],m
′
b)

, know(tb, tb), know(〈ts, A[], k, tag2[]〉, t1), know(key(B[]), t2)

−[t1 ≤ tb ∧ t2 ≤ tb ∧ tb − ts ≤ §pm]→ accept([nb], 〈A[], B[], k〉, tb)

We repeatedly generate new rules until no new rule can be generated. Then, we use the
set of all rules to check the authentication properties, ensuring that no violating rule
exists and every authentication property is satisfied. When the above two criteria can be
met, the result of the verification is a set of configurations (each configuration is a set
of constraints over the parameters). We prove that the protocol is guaranteed to satisfy
the security property if its parameters choose values from the configurations. Due to the
limitation of space, we demonstrate the full verification process of CWMF in Appendix
D. Notice that the verification process is not guaranteed to terminate in general. How-
ever, it has been shown that it often terminates for practical protocols [5,14,15]. After
obtaining the secure configurations, we need to additionally ensure that clock drift pa-
rameters are not constrained by other protocol parameters. If any clock drift parameter
is related to other protocol parameters, we denote that the protocol has security threat

Protocol]Ra No Clock Drift Shared Clock Rate Variable Clock Rate
Result Time Result Time Result Time

Corrected WMF [7,18,16] 80 Secure 47.51ms Threat 112.75ms Attack 150.09ms
TESLA [22,21] 343 Secure 3.17s Threat 3.55s Threat 4.37s
Auth Range [6,8] 53 Secure 38.58ms Secure 60.73ms Attack 46.47ms
CCITT X.509 (1c) [3] 135 Secure 162.69ms Secure 231.86ms Secure 224.00ms
CCITT X.509 (3) BAN [7] 198 Secure 791.00ms Secure 1058.05ms Secure 969.97ms
NS PK Time [20,17,10] 173 Secure 170.00ms Threat 205.93ms Threat 353.20ms

Table 3. Experiment Results

a The number of rules generated in the verification.

under the clock drift because those constraints must be checked at runtime in the real
application scenarios. For instance, given the network latency pn and the maximum
drift pc for a local clock c, if pc < pn is required in the secure configuration but it
cannot be satisfied in the real application scenario, the protocol is vulnerable.

5 Evaluations

Our method has been integrated into the tool named Security Protocol Analyzer (SPA).
SPA relies on PPL [4] to check the satisfaction of timing constraints, i.e., to tell whether
a set of timing constraints is empty or not. We use SPA to check multiple timed proto-
cols as shown in Table 3. All the experiments are conducted using a Mac OS X 10.10.5
with 2.3 GHz Intel Core i5 and 16G 1333MHz DDR3. In order to clearly demon-
strate how clock drift can affect the security of protocols, all of the protocols evaluated
in this section are correct under perfect synchronization. The evaluated protocols are
corrected WMF [7,12], TESLA [22,21], a distance bounding protocol [6,8], corrected
CCITT [9,3,7]. and a timing commitment version [10,15] of Needham-Schroeder [20,17].
All of the protocols can be verified or falsified for an unbounded number of protocol ses-
sions. SPA and the protocol models are available at [1]. Notice that the security (secure
constraints over parameters) is proved based on the satisfaction of all of the queries,
so we do not show the results for different queries separately in the table. Particularly,
we have found a new clock drift related security threat in TESLA. In the following, we
illustrate how SPA works with our running example first and then other protocols.

5.1 CWMF Protocol

Based on the specification of CWMF in Section 2.3, WMF is checked in three differ-
ent scenarios of clock drift. Let da, ds and db be the drift distances of ca, cs and cb
respectively.

– When all clocks are perfectly synchronized, in order to finish CWMF, SPA returns
that the minimum network latency pn should be smaller than the maximum mes-
sage lifetime pm.

– (SR) When the local clocks share the same clock rate, CWMF is correct if and
only if the following constraints are met: (1) 0 ≤ ds − da; (2) 0 ≤ db − ds; (3)
ds − da ≤ pm − pn; (4) db − ds ≤ pm − pn. Constraint (1) and (2) ensure that the
injective authentication is finished within pm. Constraint (3) and (4) are required to
finish the protocol. Since da, ds and db exist in the constraints, which might not be
satisfied in practice, the verification result presents a security threat of CWMF.

– (VR) When different local clocks have different clock rates, the constraint returned
by SPA is false . It means that SPA cannot find the right parameter values to make
CWMF secure in the case of VR. Intuitively, the authentication property requires
CWMF to be finished within 2 × pm, whereas the protocol itself can only achieve
the timing threshold 2×pm+pa+pb. In order to ensure 2×pm+pa+pb ≤ 2×pm,
we have pa + pb ≤ 0. Since pa and pb are positives, SPA cannot find any suitable
constraint for these parameters.

5.2 TESLA Protocol

TESLA [22,21] is short for Timed, Efficient, Streaming, Loss-tolerant Authentication
protocol. It can provide efficient authenticated broadcast over lossy channels. Generally,
it consists of many resource constrained receivers and a relatively powerful sender.

Protocol Description. The goal of TESLA is to transfer a set of messages {Mj | j ∈
[0 . . . n]} from a sender S to a receiver R in an authenticated manner. Since R have
limited computing power, S cannot adopt signature for authentication purpose because
of the large computing overhead. As a result, S computes hash values for messages with
hash keys and uses these keys for authentication. Specifically, S divides the message
transmission time into several continuous intervals. Each interval has the same length
of pd (pd > 0). Then, S sends the messages with their hash values in different time
intervals and reveals the corresponding hash keys in later time intervals. For example,
S sends 〈Mj ,mac(Mj , ki)〉 in the i-th time interval and reveals the key ki in the next
interval. Since only S knows ki before ki is revealed, when ki is check to be a hash key
from S, 〈Mj ,mac(Mj , ki)〉 should be sent from S. In order to check the authenticity of
the hash keys, TESLA requires these keys to form a chain such that ki can be computed
by ki+1 with a one-way function. Hence, when S can authenticate the first key k0 to R,
R can use k0 to authenticate newly received hash keys. Additionally, using this method,
even if some hash key ki is lost, once ki+x (x > 0) is received by R, ki can be computed
from ki+x for authentication. In order to provide sound security, S in TESLA does not
send the hash keys directly. Instead, it sends the hash key generators {k′i} and uses the
generators to compute the actual hash keys {ki}.

Unlike WMF and many other protocols, TESLA does not assume perfect clock
synchronization. It rather requires loose time synchronization between S and R, where
R knows the upper-bound of the local clock drift δ between S and R. In order to obtain
the upper-bound, TESLA adopts the following two-step protocol. Firstly, R reads its
current time as tr, generates a nonce (a random number) n and sends n to S. Secondly,
S reads its current time as ts, sign ts and n with its private signing key sks and sends
the signature back to R. When R receives the signature from S, R can be sure that δ has
an upper-bound of ts − tr. Thereafter, when R receives a message from S at its local

time t′r, he can claim that the current time of S is upper-bounded by t′r + ts − tr. Due
to the limited space, the modeling details of TESLA are available in Appendix B.

Verification Results. When TESLA is checked with SR or no clock drift, it is veri-
fied as correct with the requirement 2 × pn < pd, i.e., the length of every interval
pd should be larger than twice of the minimal network latency pn. To the best of our
knowledge, this configuration requirement, justified in the following, has not be re-
ported in any other literature before. According to the verification result from SPA, this
protocol configuration requirement is necessary because of the over-approximation of
S’s clock at R’s side in TESLA. When a payload is sent by S at t′s and received by
R at t′r based on their local clocks respectively, the clock synchronization ensures that
t′s < tbounds = t′r + ts− tr. Additionally, in order to receive and check the payload suc-
cessfully, t′s and tbounds should belong to the same interval. Hence, given an initial time
t0 and an interval index i, we have t0 + i× pd ≤ t′s < t′r + ts− tr < t0 +(i+1)× pd,
which implies that pd should be larger than (t′r − tr)− (t′s − ts). That is, 2× pn < pd.

When TESLA is checked with VR, SPA automatically reports a new security re-
quirement such that pr + ps ≤ pn, where pr and ps are the maximum clock drift of R
and S respectively. This configuration requirement is necessary because the clock syn-
chronization alone fails to guarantee the bounding t′s < t′r + ts − tr3. Hence, in order
to prevent the adversary from using the published keys to construct legal payloads, the
sum of the clock drift values from R and S should be smaller than the network latency.
This new configuration largely limits the application of TESLA protocol when VR is
assumed, which is also unreported in existing literatures.

6 Related Works

This work builds on our previous works [14,15]. In this work, we extend the timed
applied π-calculus with local clocks and clock drift. In order to verify the protocols
specified in timed applied π-calculus, we define its semantics based on the timed logic
rules [14,15]. We introduce two clock drift scenarios based on whether the clock rate is
shared or not. During the evaluation, we show that our framework is able to verify timed
security protocols with clock drift automatically, which is unique comparing with other
existing works. The analyzing framework closest to ours was proposed by Delzanno
and Ganty [12] which applies MSR(L) to specify unbounded crypto protocols by com-
bining first order multiset rewriting rules and linear constraints. According to [12], the
protocol specification is modified by explicitly encoding an additional timestamp, rep-
resenting the initialization time, into some messages. Thus the attack can be found by
comparing the original timestamps with the new one in the messages. However, it is
unclear how to verify timed protocol in general using their approach. Our method can
be applied to verify protocols without any protocol modification. Many tools [5,11,19]
for verifying untimed security protocols are related.

3 2× pn < pd in SR has been updated to 2× pn < pd + 2× (ps + pr) in VR.

7 Conclusions

In this work, we develop a systematic method to formally specify as well as automat-
ically verify timed security protocols with clock drift. We have integrated our method
into SPA and used it to analyze several timed protocols. In the experiments, we have
found new security threats related to clock drift in TESLA. Since the problem of ver-
ifying security protocols is undecidable in general, we cannot guarantee the termina-
tion of our method. However, similar to existing works on verifying security proto-
cols [5,14,15], it has been shown that it often terminates for practical protocols.

References

1. SPA tool and experiment models. Available at http://lilissun.github.io/r/
drift.html.

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In POPL,
pages 104–115, 2001.

3. M. Abadi and R. M. Needham. Prudent engineering practice for cryptographic protocols.
IEEE Trans. Software Eng., 22(1):6–15, 1996.

4. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra
and the parma polyhedra library. In SAS, pages 213–229. Springer, 2002.

5. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In CSFW,
pages 82–96. IEEE CS, 2001.

6. S. Brands and D. Chaum. Distance-bounding protocols (extended abstract). In EURO-
CRYPT, volume 765 of Lecture Notes in Computer Science, pages 344–359. Springer, 1993.

7. M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. ACM Trans. Comput.
Syst., 8(1):18–36, 1990.

8. S. Capkun and J.-P. Hubaux. Secure positioning in wireless networks. IEEE Journal on
Selected Areas in Communications, 24(2):221–232, 2006.

9. CCITT. The directory authentication framework - Version 7, 1987. Draft Recommendation
X.509.

10. T. Chothia, B. Smyth, and C. Staite. Automatically checking commitment protocols in
proverif without false attacks. In POST, pages 137–155, 2015.

11. C. Cremers. The Scyther tool: Verification, falsification, and analysis of security protocols.
In CAV, pages 414–418. Springer, 2008.

12. G. Delzanno and P. Ganty. Automatic verification of time sensitive cryptographic protocols.
In TACAS, pages 342–356. Springer, 2004.

13. D. Dolev and A. C.-C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–207, 1983.

14. L. Li, J. Sun, Y. Liu, and J. S. Dong. Tauth: Verifying timed security protocols. In ICFEM,
pages 300–315. Springer, 2014.

15. L. Li, J. Sun, Y. Liu, and J. S. Dong. Verifying parameterized timed security protocols. In
FM, page 342–359. Springer, 2015.

16. L. Li, J. Sun, Y. Liu, M. Sun, and J. S. Dong. A formal specification and verification frame-
work for timed security protocols. Technical report, Singapore University of Technology and
Design, 2016.

17. G. Lowe. An attack on the needham-schroeder public-key authentication protocol. Informa-
tion Processing Letters, 56:131–133, 1995.

18. G. Lowe. A family of attacks upon authentication protocols. Technical report, Department
of Mathematics and Computer Science, University of Leicester, 1997.

http://lilissun.github.io/r/drift.html
http://lilissun.github.io/r/drift.html

19. S. Meier, B. Schmidt, C. Cremers, and D. A. Basin. The Tamarin prover for the symbolic
analysis of security protocols. In CAV, pages 696–701. Springer, 2013.

20. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks
of computers. Commun. ACM, 21(12):993–999, 1978.

21. A. Perrig, R. Canetti, D. X. Song, and J. D. Tygar. Efficient and secure source authentication
for multicast. In NDSS, 2001.

22. A. Perrig, R. Canetti, J. D. Tygar, and D. X. Song. Efficient authentication and signing of
multicast streams over lossy channels. In S&P, pages 56–73, 2000.

23. K. Sun, P. Ning, and C. Wang. Secure and resilient clock synchronization in wireless sensor
networks. IEEE Journal on Selected Areas in Communications, 24(2):395–408, 2006.

Appendix A: Semantics of Timed Applied π-calculus

In order to facilitate efficient protocol verification, we define the semantics of timed
applied π-calculus based on the timed logic rules.

Semantics of Functions. Given a function written in timed applied π-calculus in the
following form.

f(m1,m2, . . . ,mn) = m@D

The timed logic rules can be accordingly written as follows.

know(m1, t1), know(m2, t2), . . . , know(mn, tn)

−[∀i ∈ {1 . . . n} : t− ti ∈ D]→ know(m, t)

It means that the adversary can obtain the function result after a certain computation
time in D, when he/she knows all the function inputs.

Semantics of Processes. Given a process in timed applied π-calculus, its execution
forms various context information, including generated nonces, timestamps, security
claims, validated conditions and network communications. Thus, we need to keep the
track of these execution contexts in order to define its semantics. In general, the context
of a process P is a tuple 〈C,U,M,G,H,B, σ〉 where

– C maps a clock c to its most recently reading tc before the execution of P . We use
it to maintain a chronological order of all generated timestamps, i.e., for any new
timestamp t from c, we have tc ≤ t.

– T maps a local clock reading t to its corresponding global clock reading t′.
– f is a variable represents the full execution trace of the current process replication

including P , consisting of network inputs, read timestamps and generated nonces
in a chronological order. r is a variable represents the rest of the execution trace
from P . Since the process is deterministic, the process outputs are excluded from
f and l. Their structure is in the form of 〈m1, 〈m2,m

′
2〉〉, where all of the first

message in the tuples 〈m1,m2〉 form the execution trace. Using this method, we
can add another message m3 to the trace with a substitution m′2 7→ 〈m3,m

′
3〉.

– G is a set of untimed guards that leads to P .
– B is a set of timing constraints that leads to P .
– σ is a substitution that is applicable to P .

Given a process P and its contexts 〈C, T, f, r,G,H,B, σ〉, the timed logic rules ex-
tracted from P can be denoted as bP cCTfrGHBσ. These timed logic rules represent
the capabilities of the adversary, as illustrated in Section 4.1. Since we target at verify-
ing timed security protocols with an unbounded number of sessions, when a protocol
P0 is specified in the timed applied π-calculus as shown in Section 2.2, the specification
and verification are actually based on ‘µt0.µt1 : c1 . . . µtn : cn.!P0’, where t0 is the
starting time of the whole process and ∀i ∈ [1..n] we have ti as the initial timestamp of
the local clock ci. Then, the semantic rule generation can be fired as bP0cC0∅fr∅∅U∅,
where f and l are variables, C0 maps the global clock to t0 and ci to ti.

First, we discuss three types of processes that either terminate the current session or
fork sub-sessions. They are the null process ‘0’, the parallel composition process ‘P |Q’

and the replication process ‘!P ’. Since the current session is completed when the null
process 0 is reached, no rule is defined. Given the parallel composition process ‘P |Q’ as
the next process, the current process can choose both sub-sessions to execute. For every
unique message u in U , u remains a unique message in P and Q respectively. When
infinite process replication ‘!P ’ is the next process, all unique messages in U become
duplicated in all the replications of P . Hence, U becomes empty and other contexts
remain the same.

b0cCTfrGHBσ = ∅
bP |QcCTfrGHBσ
= bP cCTfrPGHB(σ · [r 7→ 〈rP , rQ〉])
∪ bQcCTfrQGHB(σ · [r 7→ 〈rP , rQ〉])
b!P cCTfrGHBσ = bP cCTfr′GHB(σ · [r 7→ ⊥])

Second, when the nonce or timestamp generation process is encountered, we add it
into the execution trace M respectively. For the nonce generation process, we indicate
its generation by adding a new event to the premises and insert it into U because nonces
are random numbers. For the timestamp generation process, we add a timing constraint
to describe the chronological order of timestamps as well as a know event to show
that the adversary can control the timing of process execution. When VR is applicable,
Bd(t, t′, c) is −pc ≤ t− t′ ≤ pc. When SR is applicable, Bd(t, t′, c) is t = t′ + dc.

bνn.P cCTfrGHBσ
= bP cCTfr′G(H] new([n], loc())] unique([n], loc(), f))

B(σ · [r 7→ 〈[n], r′〉])
bµt.P cCTfrGHBσ
= bP c(C ◦ 〈cg, t〉)(T] 〈t, t〉)fr′G(H] know(t, t))

(B ∩ C(cg) ≤ t)(σ · [r 7→ 〈t, r′〉])
bµt : c.P cCTfrGHBσ
= bP c(C ◦ 〈c, t〉 ◦ 〈cg, t′〉)(T] 〈t, t′〉)r′G(H] know(t, t′))

(B ∩ C(c) ≤ t ∩ C(cg) ≤ t′ ∩Bd(t, t
′, c))(σ · [r 7→ 〈〈t, t′〉, r′〉])

Third, four conditional expressions exist in the timed applied π-calculus. The equiv-
alence checking between messages should be included in G, while the timing con-
straints should be added toB. The timing delay expression first reads the current timing
and then checks the timing constraints. The function application process computes the
function result and stores it into a variable. Notice that we do not consider the function
application delay in the process, because the computation delay specified in the function
definition aims at describing the adversary rather than the legitimate protocol partici-
pants. Since we can insert additional timing delay into the process whenever necessary,

the protocol specification becomes more flexible and accurate.

bif m1 = m2 then P else QcCTfrGHBσ
= bP cCTfrGHB(σ ·mgu(m1,m2))

∪ bQcCTfr(G ∧m1 6= m2)HBσ

bif B0 then P else QcCTfrGHBσ
= bP cCTfrGH(B ∩B0)σ

∪ (∪c∈B0bQcCTfrGH(B ∩ ¬c)σ)
bwait µt until Bt then P cCTmGHBσ
= bP c(C ◦ 〈cg, t〉)(T] 〈t, t〉)r′G(H] know(t, t))

(B ∩Bt ∩ C(gc) ≤ t)(σ · [r 7→ 〈t, r′〉])
bwait µt : c until Bt then P cCTfrGHBσ
= bP c(C ◦ 〈c, t〉 ◦ 〈cg, t′〉)(T] 〈t, t′〉)r′G(H] know(t, t′))

(B ∩Bt ∩ C(c) ≤ t ∩ C(gc) ≤ t′ ∩Bd(t, t
′, c))(σ · [r 7→ 〈〈t, t′〉, r′〉])

Given function f defined as f(m′1, . . . ,m
′
n)⇒ m′@D, we have

blet x = f(m1, . . . ,mn) then P cCTfrGHBσ
= bP cCTfrG(H ∪H ′)B(σ · {x 7→ m′} ·mgu(〈m1, . . . ,mn〉, 〈m′1, . . . ,m′n〉))

Fourth, network communications can happen in the timed applied π-calculus. For
every network input, we record the time when it is received and add a premise event as
a requirement for the adversary to know that message. On the other hand, we generate
a time logic rule for every network output, representing that the output will be known
to the adversary when it is sent out.

bin(x).P cCTfrGHBσ
= bP c(C ◦ 〈cg, t〉)Tr′G(H] know(x, t′))

(B ∩ C(cg) ≤ t ∩ t′ ≤ t)(σ · [r 7→ 〈x, r′〉])
bout(m).P cCTfrGHBσ
= bP cCTfrGHBσ
] ([G] H −[B ∩ t− C(cg) ≥ §pn]→ know(m, t)) · σ

Fifth, we can check the uniqueness of messages in the process, which could be
particularly useful for preventing replay attacks and thus ensure injective timed authen-
tication. In practice, the uniqueness checking is usually implemented by maintaining a
database and comparing the new values with the existing ones.

bcheck m as unique then P cCTfrGHBσ
= bP cCTfrG(H] unique(m, loc(), f))Bσ

Sixth, three types of authentication events can be engaged in the process. The join
event have the same arguments as of the join expression in the calculus. However, for
the init and accept events, although their meanings are preserved in the timed logic

rules, in order to check the injective authentication properties, we add an additional
argument [d] to represent the session id. The init and join events are added into the
rule premises. The accept events act as the rule conclusions.

binit(m)@t.P cCTfrGHBσ
= bP cCTfrG(H] new([d], loc())

] unique([d], loc(), f)] init([d],m, T (t)))Bσ

bjoin(m)@t.P cCTfrGHBσ
= bP cCTfrG(H] new([d], loc())

] unique([d], loc(), f)] join([d],m, T (t)))Bσ

baccept(m)@t.P cCTfrGHBσ
= bP cCTfrGHBσ] ([G] H] new([d], loc())

] unique([d], loc(), f) −[B]→ accept([d],m, T (t))) · σ

Seventh, the last two processes in the timed applied π-calculus is for the secrecy
claim. The secrecy property is checked as an absence of information leakage during
the verification [16], so a new event leak(m) is introduced as a contradiction against
secrecy(m). Additionally, if an open(m) is engaged before leak(m), we deem the leak-
age of m as intended by its owner.

bopen(m).P cCTfrGHBσ
= bP cCTfrG(H] open(m))Bσ

bsecrecy(m).P cCTfrGHBσ
= bP cCTfrGHBσ
] ([G] H] know(m, t) −[B]→ leak(m)) · σ

Appendix B: TESLA Protocol Specification

TESLA [22,21] is short for Timed, Efficient, Streaming, Loss-tolerant Authentication
protocol. It can provide efficient authenticated broadcast over lossy channels. Generally,
it consists of many resource constrained receivers and a relatively powerful sender.

Protocol Description. The goal of TESLA is to transfer a set of messages {Mj | j ∈
[0 . . . n]} from a sender S to a receiver R in an authenticated manner. Since R have
limited computing power, S cannot adopt signature for authentication purpose because
of the large computing overhead. As a result, S computes hash values for messages with
hash keys and uses these keys for authentication. Specifically, S divides the message
transmission time into several continuous intervals. Each interval has the same length
of pd (pd > 0). Then, S sends the messages with their hash values in a time interval i
and reveals the corresponding hash keys in a later time interval i + d. That is, S sends
〈Mj ,mac(Mj , ki)〉 in the i-th time interval and reveals the key ki in the interval i+ d.
Since only S knows ki before ki is revealed, when ki is check to be a hash key from S,
〈Mj ,mac(Mj , ki)〉 should be sent from S. In order to check the authenticity of the hash
keys, TESLA requires these keys to form a chain such that ki can be computed by ki+1

with a one-way function. Hence, when S can authenticate the first key k0 to R, R can
use k0 to authenticate newly received hash keys. Additionally, using this method, even
if some hash key ki is lost, once ki+x (x > 0) is received by R, ki can be computed
from ki+x for authentication. In order to provide sound security, S in TESLA does not
send the hash keys directly. Instead, it sends the hash key generators {k′i} and uses the
generators to compute the actual hash keys {ki}.

1. Sender Setup. In this step, S needs to decide the number of time intervals for its
life-cycle, and then prepares the key chain for authentication. Firstly, S generates a
random nonce k′n as the hash key generator of the final interval n and then computes
the generators k′i = mac(k′i+1, 0) for other intervals i ∈ [0 . . . n − 1]. The symmetric
encryption key of interval i can be computed from k′i as ki = mac(k′i, 1).

2. Bootstrapping a new Receiver. Once S is properly set up, it needs to bootstrap new
receivers with an initial authentication packet. This packet is a signature from S that
specifies the beginning interval i and the corresponding key generator k′i−d.

3. Clock Synchronization. Unlike WMF and many other protocols, TESLA does not
assume perfect clock synchronization. It rather requires loose time synchronization be-
tween S and R, where R knows the upper-bound of the local clock drift δ between S and
R. In order to obtain the upper-bound, TESLA adopts the following protocol with two
messages.

(1) R reads its current time as tr and generates nonce n
R→ S : n

(2) S reads its current time as ts
S → R : {ts,n}sks

Firstly, R reads its current time as tr, generates a nonce (a random number) n and sends
n to S. Secondly, S reads its current time as ts, sign ts and n with its private signing
key sks and sends the signature back to R. When R receives the signature from S, R can

Sender ,
01 !(in(n).µts : cs.out(sign(〈syn, ts, n〉, sks)).0) (Clock Sync)
02 | (νk′2.let k′1 = mac(k′2, 0) then let k′0 = mac(k′1, 0) then (Sender Setup)
03 let k1 = mac(k′1, 1) then let k2 = mac(k′2, 1) then
04 µt0 : cs.(
05 !(out(sign(〈boot , t0, k′0〉, sks)).0) (Bootstrapping)
06 | !(νm.µt′s : cs. (Send Packets)
07 if t′s < t0 + pd then
08 init(pks ,m, k1)@t

′
s.out(〈m,mac(k1,m)〉).0

09 else if t′s < t0 + 2× pd then
10 init(pks ,m, k2)@t

′
s.out(〈m,mac(k2,m)〉).out(k′1).0)

11 | !(wait µts : cs until ts ≥ t0 + 2× pd then out(k′2).0)))

Receiver ,
12 µtr : cr.νn.out(n). (Clock Sync)
13 in(sync).let 〈=syn, ts,=n〉 = check(sync, pks) then
14 in(sig).let 〈=boot , t0, k

′
0〉 = check(sig , pks) then (Bootstrapping)

15 !(in(payload).let 〈m, ck〉 = payload then (Receiver Tasks)
16 µt′r : cr.let tbounds = t′r + ts − tr then
17 if tbounds < t0 + pd then in(k′).if k′0 = mac(k′, 0) then
18 if ck = mac(mac(k′, 1),m) then accept(pks ,m,mac(k′, 1))@t′r.0
19 else if tbounds < t0 + 2× pd then in(k′).if k′0 = mac(mac(k′, 0), 0) then
20 if ck = mac(mac(k′, 1),m) then accept(pks ,m,mac(k′, 1))@t′r.0)

Fig. 1. TESLA Model in Timed Applied π-calculus

be sure that δ has an upper-bound of ts − tr. Thereafter, when R receives a message
from S at its local time t′r, he can claim that the current time of S is upper-bounded by
t′r + ts − tr.

4. Sending Authenticated Packets. In this step, S can send messages to R with authenti-
cated packets. The packet Pj for a message Mj sent in interval i can be constructed as
〈Mj ,mac(ki,Mj), k

′
i−d〉. Once R receives the packet Pj = 〈Mj ,mac(ki,Mj), k

′
i−d〉

at time t′r, it computes an upper-bound of S’s local clock t′s as t′r+ts−tr. R then ensures
that S has not revealed the ki yet at its local time t′s (based on the results from Clock
Synchronization). However, R cannot verify the authenticity of Pj until k′i is revealed
in a later packet. Hence, R stores Pj in its memory and waits for a key generator k′x
(x ≥ i) to generate ki. When the last verified key generator is k′v , R can verify a newly
received key generator k′x by checking k′v = macx−v(k′x, 0).

TESLA Model. In this section, we model TESLA illustrated above using timed applied
π-calculus. Firstly, we declare two local clocks for S and R as cs and cr respectively.
By assumption, cs’s clock drift bounded from above by a parameter ps, and cr’s clock
drift is bounded by a parameter pr. In our model, sks is the private signing key of S and
pks = pk(sks) is the corresponding public key. Additionally, we assume that d = 1 in
TESLA, i.e., S reveals the key generator k′i at interval i + 1 for every message sent at
interval i. For demonstration purpose, the hash key chain in our model consists of three
hash keys. The analysis of TESLA with longer key chains are available in Section 5.

Based on above settings and assumptions, we could model the process of S as
Sender and the process of R as Receiver as shown in Figure 1. Then, the overall pro-
tocol then can be modeled as TESLA , Sender |!Receiver |!out(pks).

The process Sender consists of two sub-processes. Line 1 corresponds to the sub-
process for clock synchronization and the process from Line 2 to Line 11 is the main
process of TESLA. From Line 2 to Line 3, S generates a nonce k′2 as the hash key
generator for the last interval and then computes k′0, k′1, k1 and k2 for later usage. k′0
is the initial key generator that will be authenticated to the receivers. Then, S records
the starting time of TESLA as t0 at Line 4 and broadcasts the signature of 〈t0, k′0〉 at
Line 5. Based on the current local time, S chooses different hash keys to authenticate
the messages from Line 6 to Line 10. S reveals the last hash key k2 at Line 11 when all
time intervals are over.

The process Receiver does the corresponding tasks to the process Sender . Firstly,
it synchronizes its clock from Line 1 to Line 2. After the synchronization, whenever it
reads a timestamp t′r from its local clock, it can be sure that the local time of S is upper-
bounded by t′r + ts − tr. Then, at Line 14, it receives the signature of the beginning
time t0 and the initial key generator k′0 from S. From Line 15 to Line 20, R receives
the messages from S in an authenticated way. When it gets a message m and its hash
value ck from the network, it ensures that ck has not been revealed by S. Later, when R
obtains the key generator k′, it checks k′ using k′0 and then checks ck using k′. When
k′ and ck are correct, R claims that the message m is legitimately sent by S.

Timed Properties. TESLA ensures that every message accepted by R is sent by S pre-
viously. Hence, we have the following non-injective authentication property.

accept(pks ,m, k)@tr ←[ts ≤ tr]− init(pks ,m, k)@ts

Appendix C: Frequently Used Cryptographic Functions

Scheme Definition
Symmetric encs(m, k) (encryption)
Encryption decs(encs(m, k), k)⇒ m (decryption)
Asymmetric pk(skey) (compute public key)
Encryption enca(m, pkey) (encryption)

deca(encs(m, pk(skey)), skey)⇒ m (decryption)
Signature sign(m, skey) (compute signature)

check(sign(m, skey), pk(skey))⇒ m (check signature)
extract(sign(m, skey))⇒ m (extract signature)

Hash hash(m) (compute hash value)
mac(k,m) (compute mac value)

Tuple tuplen(m1, . . . ,mn) (construct tuple)
∀i ∈ {1 . . . n} : (extract tuple)
get in(tuplen(m1 , . . . ,mn))⇒ mi

Table 4. Cryptographic Function Definitions

Appendix D: Verification of CWMF

In this section, we focus on finding the attack of CWMF when we assume VR. We
use the following timed logic rules to express the timed applied π-calculus process of
CWMF. First, Pr is written as Rule (3).

[u 6= A[] ∧ u 6= B[]] know(u, t1) −[t− t1 ≥ §pn]→ know(key(u), t) (3)

Secondly, Pa is written as Rule (4), where pa > 0 is the maximum drift of ca.

new([k], la[]), unique([k], la[], 〈r, [k], 〈ta, t′a〉〉)
, know(r , t1), know(ta, ta), init([k], (A[], r, [k]), t

′
a)

−[t1 ≤ t′a ∧ t− t′a ≥ §pn ∧ |ta − t′a| ≤ §pa]→
know(〈A[], encs(〈ta, r, [k], tag1 []〉, key(A[]))〉, t) (4)

Thirdly, Ps is written as Rule (5), where ps > 0 is the maximum drift of cs.

know(〈i, encs(〈ta, r, k, tag1 []〉, key(i))〉, t1),new([ns], la[])

, unique([ns], la[], 〈〈i, encs(〈ta, r, k, tag1 []〉, key(i))〉, k, 〈ts, t′s〉〉)
, know(ts, ts), join([ns], (i, r, k), t

′
s)

−[t1 ≤ t′s ∧ t− t′s ≥ §pn ∧ ts − ta ≤ §pm ∧ |ts − t′s| ≤ §ps]→
know(encs(〈ts, i, k, tag2 []〉, key(r)), t) (5)

Fourthly, Pb is written as Rule (6), where pb > 0 is the maximum drift of cb.

know(encs(〈ts, i, k, tag2 []〉, key(B[])), t1), know(tb, tb),new([nb], la[])

, unique([nb], la[], 〈encs(〈ts, i, k, tag2 []〉, key(B[])), [nb], 〈tb, t′b〉〉)
, unique(k, db[], 〈encs(〈ts, i, k, tag2 []〉, key(B[])), [nb], 〈tb, t′b〉〉)
−[t1 ≤ t′b ∧ tb − ts ≤ §pm ∧ |tb − t′b| ≤ §pb]→

accept([nb], 〈i, B[], k〉, t′s) (6)

Fifthly, Pp can be expressed as Rule (7) and Rule (8).

−[]→ know(A[], t) (7)
−[]→ know(B[], t) (8)

Lastly, symmetric encryption and symmetric decryption can be written as Rule (9)
and Rule (10) respectively.

know(m, t1), know(k, t2) −[t1 ≤ t ∧ t2 ≤ t]→ know(encs(m, k), t) (9)
know(encs(m, k), t1), know(k, t2) −[t1 ≤ t ∧ t2 ≤ t]→ know(m, t) (10)

When we compose Rule(4) to Rule (5), we can obtain the following rule.

new([k], la[]), unique([k], la[], 〈r, [k], 〈ta, t′a〉〉)
, know(r , t1), know(ta, ta), init([k], (A[], r, [k]), t

′
a),new([ns], la[])

, unique([ns], la[], 〈〈A[], encs(〈ta, r, [k], tag1 []〉, key(A[]))〉, [k], 〈ts, t′s〉〉)
, know(ts, ts), join([ns], (A[], r, [k]), t

′
s)

−[t1 ≤ t′a ∧ t′s − t′a ≥ §pn ∧ |ta − t′a| ≤ §pa
∧ t− t′s ≥ §pn ∧ ts − ta ≤ §pm ∧ |ts − t′s| ≤ §ps]→

know(encs(〈ts, A[], [k], tag2 []〉, key(r)), t) (11)

Then, we can compose Rule (11) to Rule (6) and obtain the following rule.

new([k], la[]), unique([k], la[], 〈B[], [k], 〈ta, t′a〉〉)
, know(B[], t1), know(ta, ta), init([k], (A[], B[], [k]), t′a),new([ns], la[])

, unique([ns], la[], 〈〈A[], encs(〈ta, B[], [k], tag1 []〉, key(A[]))〉, [k], 〈ts, t′s〉〉)
, know(ts, ts), join([ns], (A[], B[], [k]), t′s)

, know(tb, tb),new([nb], la[])

, unique([nb], la[], 〈encs(〈ts, A[], [k], tag2 []〉, key(B[])), [nb], 〈tb, t′b〉〉)
, unique([k], db[], 〈encs(〈ts, A[], [k], tag2 []〉, key(B[])), [nb], 〈tb, t′b〉〉)
−[t1 ≤ t′a ∧ t′s − t′a ≥ §pn ∧ |ta − t′a| ≤ §pa
∧ t′b − t′s ≥ §pn ∧ ts − ta ≤ §pm ∧ |ts − t′s| ≤ §ps
∧ tb − ts ≤ §pm ∧ |tb − t′b| ≤ §pb]→

accept([nb], 〈A[], B[], [k]〉, t′s) (12)

Then, we can use Rule (8) to fulfill a premise of Rule (12).

new([k], la[]), unique([k], la[], 〈B[], [k], 〈ta, t′a〉〉)
know(ta, ta), init([k], (A[], B[], [k]), t′a),new([ns], la[])

, unique([ns], la[], 〈〈A[], encs(〈ta, B[], [k], tag1 []〉, key(A[]))〉, [k], 〈ts, t′s〉〉)
, know(ts, ts), join([ns], (A[], B[], [k]), t′s)

, know(tb, tb),new([nb], la[])

, unique([nb], la[], 〈encs(〈ts, A[], [k], tag2 []〉, key(B[])), [nb], 〈tb, t′b〉〉)
, unique([k], db[], 〈encs(〈ts, A[], [k], tag2 []〉, key(B[])), [nb], 〈tb, t′b〉〉)
−[t′s − t′a ≥ §pn ∧ |ta − t′a| ≤ §pa
∧ t′b − t′s ≥ §pn ∧ ts − ta ≤ §pm ∧ |ts − t′s| ≤ §ps
∧ tb − ts ≤ §pm ∧ |tb − t′b| ≤ §pb]→

accept([nb], 〈A[], B[], [k]〉, t′s) (13)

According to the authentication property, we need to ensure t′b − t′a ≤ §pm ∧ t′s −
t′b ≤ §pm in Rule (13). Hence, §pa + §pm + §ps ≤ §pm ∧ §pb + §pm + §ps ≤ §pm is
required for protocol security. Then, we have §pa+ §ps ≤ 0∧§pb+ §ps ≤ 0. However,

we assume that the clock drift exists, i.e., §pa, §ps and §pb are positives. As a result,
we cannot find any value for them to ensure the authentication property, which can be
concluded as an attack for CWMF under VR.

	Automated Verification of Timed Security Protocols with Clock Drift

